

TCS @ OT

FAST-CAM

USER MANUAL

04.2018

The aim of these series of user guides is to help the observer in some specific tasks concerning the telescopes and instruments available at the Observatorios de Canarias (OOCC). The information is supplied in a clear and simple manner, and it comes illustrated with screen captures in order to make the manual easy to use.

In particular, here, the user will find a practical description of how to observe with FastCam at the TCS telescope:

1. Introduction	pg1
1. Start up	pg3
2. Making the connections	pg5
3. Taking BIAS	pg9
4. Taking FLATS	pg11
5. Making the FOCUSS & Alignment	pg13
6. Autoguiding with FOVIA	pg17
7. Observing with FastCam	pg19

For any comment, please contact to the staff of the Telescope Operations Group (ttnn a at iac.es)

April 2018

1

1. Introduction

FastCam (http://www.iac.es/proyecto/fastcam/) is an instrument jointly developed by the Spanish Instituto de Astrofísica de Canarias and the Universidad Politécnica de Cartagena, designed to obtain high spatial resolution images in the optical wavelength range from ground-based telescopes by using the Lucky Imaging technique.

The basic characteristics of FastCam @ TCS are:

Field of View	$22x22 \operatorname{arcsec}^2$
Pixel scale	0.043 arcsec pix ⁻¹
Image size	512x512 pix
Read-out speed	30 exposures sec ⁻¹

IMPORTANT NOTE

The raw data volume generated by FastCam is quite large. For example, a cube of 1000 512x512 pixel images contains 1GB of data. If the exposure time is 30ms, one cube like this is created every 30s. Therefore, the observation of a target during 30min will add 60GB to the disk and in a full observing night more than 500GB can be collected. Given that a FTP transfer of this data volume at the end of the observing session is no possible, we encourage the astronomers using FastCam to bring their own USB external disk. Disks have to be formatted in FAT32 mode and the file transfer should be done at the end of the night or when the two internal disks (scratch and/or scratch1) are full. The file transfer can be done by using the "cp" or "rsync" commands.

We also advise that the algorithm and software to process and reduce the raw data are not publically available. Therefore, we suggest the users to reduce and process the raw data before the end of the observing run.

Start up

2. Start up

This section is ONLY for the Telescope Operator NOT for the observer

• Switch on the instrument, connect it to the 220AC red plugs just behind the mirror of the telescope.

• Turn on the "telesforo" computer, in the dome.

• Switch on the cooler box. Press the "start/Stop" button, then you should see a "-" sign in the display. The sign is "*" when the cooler is off (see picture). Check the level of glycol (water & alcohol).

3. Making the connections

If you are going to observe in remote mode, make sure that you are into the IAC network; if you are in the IAC control room, don't worry for this, otherwise you will need a VPN connection to the IAC (just ask to the CAU people on how to do this).

First you can make the connections to the PC-CONTROL and PC-USUARIO, to do so you need VNC software and username/passwords, just ask for the instructions to the staff of the Telescope Operation Group (ttnn_a at iac.es).

Then proceed starting a session on ALEBO computer; in a terminal:

[local computer] \$ ssh -X root@alebo (password: FastCam#2009)

If you are at the TCS, then you can start from this point (skip the previous instructions). On a terminal of the ALEBO computer, make a connection to TELESFORO computer, like this:

[alebo] \$ ssh -X fastcam@161.72.82.90 (password: fastcam)

Now you are logging in TELESFORO, then type:

[telesforo] \$ andorcontrol

Some windows will appear, but you really don't need them, so it's better to minimize all of them. Now, go back to ALEBO and open a new terminal (in remote mode, just make a new ssh connection from your local computer). Then type:

[alebo] \$ FastCam

Four windows will turn up: The FastCam controlling interface

(0	,0)	Value=			(0,0)	Value=		
Region Track Pixel V Resolution 512X512			2011 LT= UT: Flip Flip	5-05-15 UT+1 + 13:11:17 >Y X<->Y Flip X Flip Y]			Normal Image Image Const=1.0 Image
4	Input	Images	V		• IIII Pr	cessed Images		Clear all
les Network	Threads	Info Log	Config			UPCT &	IAC. versior	n: Oct 15 2014
BJNAME: XPTIME: AINMUL: AINPRE: ILTER: ELESCOPE: R: EC: POCH: CDSIZE: IINNING: IGSIZE: IGORIGIN-	Test O 30.29 (r 2 M 1 P - Fi 0:00:00 R 0:00:00 D 2000.0 E 512X512Fi 1X1 (1 512X512 Si	bject Name ms) lultip. reamplifier G. reamplifier G. liter name elescope nan ight Ascensic eclination quinox ull detector si LX1, 2X2, 4X4 ize of acquire (v) cords of	RAW Base Name Dir: /home/ Cube: 1000 Data type: Save X Proces R Raw	: Test_1000_ fastcam/TCS2 Initial: 0 Science ▼ R sed □ I	030g1m2 20150511/ Final:[4 .es: 512 Red. + Proc.	x512		

The Filter wheel window

•				Fil	ter Wheel <@	alebo24GB>		(2 © © X
Filter wheel:	Narrow	•		RESE	r]				
Filters]		1	
-		-	-	-		open	1		

The Andorcontrol window

H O	Andor Contro	l <@alebo24GB>		? ⊙ ⊙ ⊗
General Temperature Image reception	Live view		Quick process vie	w
Exposure time (ms) 30.29 Full CCD	Min=1912	Max=2355	X Quickview	
EM Gain: 2				
PreAmp Gain: 1X V Binning				
Frame Transfer				
Shutter Kinetic serie 1				
-66.267C				
			Size -	_ 1000
	Power of 2		Shift & add Threshold	1% Reset

And the Telescope Control window

Dbject Info	
Object	
Name: Test	Go
- Coordinates	
AR: 0 : 0 : 0	PM: 0 arc s/yr
Dec:0. : 0. : 0.	PM 🛛 arc s/yr
Equinox: J 🔻 Epoc	h: 2000.0 Send PM
Focus	+ 50
Catalogues	
Load	
System	
User	
	PARK
leset	
leset O	k!
hecking telescope	k!
hecking telescope erial Port open	k!

In the FastCam-TCS window, select the "Config" tag, and then click on "Connect" button, this will establish a communication between ALEBO and the CCD, the filter wheel and the Telescope

-Addre	Network	Threads	Info	Log	
Con	nputer at tel	escope —			
Loc	al Port: 1030	Remote P	ort: 10		
Rer	note IP:16	1.72.82	2 . 90		Connect
	al Computer				
IP 1	.11 .22	22	11		
MAG	C: FF : FF	FF FF:	FF : FI	F	
U	nlock				
onnec	ted				

On the Andor control window, click on the "Temperature" tag, and set the temperature to -120° (just use the sliding bar) and then click on the "Cooler on" check box

	inage reception
🗙 Cooler on	
10 - 200	
- - 68C	
-120C	
ake Serie <u>Video</u>	
-66.2	67C

Now you should have FastCam ready to work.

4. Taking BIAS.

Make sure that the primary mirror covers are closed (petals closed), if not ask to the Telescope Operator to do so. Make sure that the dome lights are off.

TIP: Take bias for each value of EM GAIN that we will use on the observations (if you still don't know this, then is better to take bias for several values of EM GAIN, 20, 50, 100, 200, 300, preamp is normally left to 1.0).

Now you can proceed as follows: On the **Andor Control** window, under "**General**" tag:

- 1. Activate the "Shutter keep closed" option by clicking on its check box.
- 2. Make sure that "Frame Transfer" is NOT activated.
- 3. Activate the "Base line Clamp" option.
- 4. Select the value of the "EM Gain" by sliding the bar and the "PreAmp gain".
- 5. Set the "Exposure time" to 30ms.

\odot	Andor C	ontrol	
General T	emperature	Image rec	eption
Exposure tir	ne (ms) 30.2	9	Full CCD
M Gain: 🔘 🗍			2
PreAmp Gai	n: 1X 🔻	Binning 1x1	⊖ <mark>4</mark> ×4
] Frame Trar	nsfer	O 2X2	○ 8X8
Shutter Keep clos	ed	Kinetic serie	1
		Base line	clamp
ake Serie	Video		
	-66.2	67C	

On the FastCam-TCS window under the "Network" tag:

6. Define the directory path, where all images will be saved

7. If you want to use the FastCam software for a on-time data reduction, then set the values for a ONE cube of 500 images (initial=0, final=1, this will produce one single cube). Otherwise, we recommend to take 5 cubes of 200 iamges each (initial=0, final=4).

- 8. Select "BIAS" option in the "Data type"
- 9. Make sure that ONLY "Raw" check box is activated in the "Save" area.

Files	rk Threads Info Log C	Config
OBJNAME: EXPTIME: GAINMUL: GAINPRE: FILTER: TELESCOPE: AR: DEC: EPOCH: CCDSIZE: BINNING: IMGSIZE: IMGORIZE: IMGORIZE: MGORIZE:	Test Object Name 30.29 (ms) 2 Multip. 1 Preamplifier Ga - Filter name TCS Telescope nam 0:00:00 Right Ascensio 0:00:00 Declination 2000.0 Equinox 512X512 Full detector si 1X1 (1X1, 2X2, 4X4) 512X512 Size of acquire (*) (11) (X V) coords of Check Network	RAW Base Name: Test_1000_030g1m2 Dir: /home/fastcam/TCS20150511/ Cube: 1000 Initial: 0 Final: 4 Data type: Science Res: 512X512 Save Save Red. + Proc. Raw

Click on "PROCESS" button to start taking data.

5. Taking FLATS

THIS MUST BE DONE BY THE TELESCOPE OPERATOR: Park the telescope to the "Flat" position. Make sure that the petals of the primary mirror are open, and turn on the dome lights.

TIP: Take flat fields for each value of EM GAIN that we will use on the observations (if you still don't know this, then is better to take bias for several values of EM GAIN, 20, 50, 100, 200, 300, preamp is normally left to 1.0).

On the "Filter Wheel" window, make sure that the correct filter is selected.

On the Andor Control window, under "General" tag:

- 1. De-activate the "Shutter keep closed" option by clicking on its check box.
- 2. Make sure that "Frame Transfer" is NOT activated.
- 3. Keep the "Base line Clamp" option activated.
- 4. Select the value of the "EM Gain" by sliding the bar and the "PreAmp gain".

5. Set the "Exposure time" to 100ms. (recommended) and adjust the dome light intensity in order to achieve \sim 3000 counts. Click on "video" button and read the max value of the counts on the top right corner of the display.

On the FastCam-TCS window under the "Network" tag:

6. If you want to use the FastCam software for a on-time reduction of the data, then set the values for a ONE cube of 500 images (initial=0, final=1, this will produce one single cube). Otherwise, we recommend to take 5 cubes of 200 images each (initial=0, final=4).

8. Select "FLATS" option in the "Data type"

9. Make sure that ONLY "Raw" check box is activated in the "Save" area.

Click on "PROCESS" button to start taking data.

Focus & Alignment

6. Making the focus & the alignment.

The following actions must be done by the Telescope Operator: Make sure that mirror covers are closed, turn the lights off, open the upper hutch and then the lower hutch, and finally open the mirror covers.

Once the telescope is ready, the two of you (Observer and Telescope Operator) have to proceed in collaboration as follows:

Alignment.

The FOVIA camera can be shifted in the EW direction using the "Control Camera TV TCS" window, which can be launched from the PC-CONTROL. NS direction is blocked and MUST be done by hand ONLY by the Telescope Operator.

1. On the Andor Control window, run the video and select the "shift & add" option for the processing of the images:

2. You have to connect to the FOVIA PC using VNC (see remote connections instructions to find the IP's and passwords needed). Once the connection is done, you will see this desktop

3. Click on FOVIA icon, and the interface of FOVIA will turn up

1		FOVIA	×
File Help			
•	환 🔵		Fora
Camera	Engineering		
	Parard		
	- Record	Show Points	Point 1 Point 2 Point 3 Point 4
			Point 5 Point 6 Point 7 Point 8
			Rollauria
			Global Rectangle
			Point to change
			Rectangle Delete
			Beam 1 Beam 2 Beam 3 Beam 4
			None None
	Nº Integration Images		
		Auto guiding	
		X (px) 0 Euclidean	
RA "/h	DEC "/h		1 1 1 1 1 1 2 1 3 1 4 1 Auto
0	0		

4. Click on the "START" green button in order to switch on the FOVIA CCD and display the images. Make sure that "stand by" button is "on" (in green) in the "Control Camera TV TCS" window.

5. Use the EW (Este-Oeste) buttons to perform offsets in this direction, and with the help of the

Focus & Alignment

Telescope Operator make the offsets in NS direction needed to have the guiding star within the Field of view of the FOVIA camera.

Focusing.

Keep in mind that you have to focus the science camera (FastCam) and the auto-guiding camera (FOVIA).

1. Use the "focus" tool in the "Telescope control" window to adjust the focus of FastCam. (TIP: keep the video on while you are changing the focus of the telescope).

Object	nfo		
Name: Te	st	Go	
Coordina AR: 0 Dec: 0.	tes : 0 : 0 : 0. : 0.	PM: 0	arc s/yr arc s/yr
Equinox:	L Eper	0.000.0	Send PM
System		. 50	
User			
Reset			PARK
	0	k!	
Checking te Serial Port (lescope open		

This will affect the focus of FOVIA, therefore start always with this focus.

2. Unfortunately, FOVIA can ONLY be focused by hand and this MUST be done by the Telescope Operator. So keep an eye on the video display on the Andor Control window, while the Telescope Operator is modifying the focus until it would be good enough for you.

15

Autoguiding

7. Autoguiding with FOVIA.

At this point you should have FasctCam and FOVIA aligned and focused. So, no time to loose!! Point to your object (you can use the telescope control window) and to start to autoguide follow these instructions:

1. Make sure that FOVIA is not in "Stand by", you can check this on the "Control Camera TV TCS" window

2. Tune the gain of the FOVIA camera in order to make your guiding star as pointless as possible (also from the "Control Camera TV TCS" window).

3. Click on the "START" green button in order to switch on the FOVIA CCD $\,$

4. Draw a box (in green) around the star.

5. Click on the "AUTO GUIDING" button. Then, the green box will become smaller until the guiding star is caged inside the green box. If the box is not drawn the algorithm sweeps all the field of view in order to identify the best guiding star. The limiting magnitude of the FOVIA camera is \sim 13.

6. If you want to finish to auto-guide, just click again on the "AUTO GUIDING" button.

7. If you want to switch off FOVIA, you have to click on the red button (just on the right of the "START" button, and then we can close the application (clicking on the red X on the top right corner).

8. Observing with FastCam.

You did all the hard work, so now it's time to enjoy!!

1. Point to your object (use the Telescope control window to introduce the coordinates and the name)

2. If the object is not in the center of the field of FastCam, you can make offsets. To do so, you can use the "Telescope Control System User Interface", which can be launched from the FOVIA computer.

2.a. Connect to the FOVIA PC using VNC (see remote connections instructions to find IP's and passwords needed).

2.b. Click on USER icon, and the telescope control system user interface will turn up

		Telescope C	Control System User Interface	
cope Hands	Dome Lists	Misc		
Tele	cope 🕨 On	▶ 1		
Foci	s 🕨 Off	2		
Setu	p	3		*
		4		
			1	
				× 1

2.c. Go to Handset -> Telescope -> On, and choose 1,2 or 3 in order to perform 1arcsec, 10 arcsec or 1 arcmin, respectively (as shown in the image). Then on the USER Computer screen you will read "Raqueta: 1,2/3 incremental on the bottom of the central panel (as shown in next image), indicating the offset chosen.

2.d. Use the arrow keys of your keyboard to apply the offset in RA (left for a negative offset and right for positive) and in DEC (up for positive offset and down for negative).

3. Define the exposure time, EM Gain and PreAmp Gain, on the Andor Control window. Make sure that "Base line clamp" is activated.

\odot	Andor C	ontrol
General	Temperature	Image reception
Exposure	time (ms) 30.29	Full CC
M Gain: ()	2
PreAmp G	ain: 1X 🔹	Binning
Shutter Keep cl	osed k	(inetic serie 1
ake Serie	Video	Base line clamp
Aeep cl	osed	Cinetic serie 1 Base line clamp

Observing

4. On the **FastCam-TCS** window under the "**Network**" tag, choose the "Science" Data type, The number of cubes to produce, this is done defining "Initial" and "Final", and the size of each cube (in the image, we will produce 5 cubes of 1000 images each).

5. Decide which data you want to save by clicking on the corresponding check box.

6. Click on "Process" to go ahead. (TIP: be careful with "initial" and "final" values that are used to label the files, if you have to stop observing for any reason, and want to resume the observations, you could have files overwritten if you don't change these values accordingly).

Files Network	Threads Info Log	Config
OBJNAME: EXPTIME: GAINMUL: GAINPRE: FILTER: TELESCOPE: AR: DEC: EPOCH: CCDSIZE: BINNING: IMGSIZE: IMGORIGIN: T	TestObject Name30.29(ms)2Multip.1Preamplifier Ga-Filter nameTCSTelescope nam0:00:00Right Ascensio0:00:00Declination2000.0Equinox512X512Full detector si1X1(1X1, 2X2, 4X4)512X512Size of acquire(1 1)(X Y) coords ofCheck Network	RAW Base Name: Test_1000_030g1m2 Dir: //home/fastcam/TCS20150511/ Cube: 1000 Initial: 0 Final: 4 Data type: Science Res: 512X512 Save Processed Red. + Proc. Raw